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Abstract. We theoretically study the spin pump effects of the rotating magnetic field on the spin current
through two coupled quantum dots. Owing to the interdot coupling, two molecular states with different
bands can be formed, resulting asymmetric spin current peaks. The possibility of manipulating the spin
current is explored by tuning the strength, the frequency, and the direction of the rotating magnetic field.
The number and location of the spin current peaks can be controlled by making use of various tunings.
Furthermore, the normal 2π period of the spin current with respect to the magnetic flux can be destroyed
by the interdot coupling.

PACS. 73.63.-b Electronic transport in nanoscale materials and structures – 72.25.Mk Spin transport
through interfaces – 85.75.-d Magnetoelectronics; spintronics: devices exploiting spin polarized transport
or integrated magnetic fields – 85.65.+h Molecular electronic devices

1 Introduction

Recently, many research efforts have been devoted to gen-
erating the pure spin current without an accompanying
charge current, since one of the key ingredients in spintron-
ics is to use and control the spin current in the nonlinear
electronic devices [1]. Therefore, it becomes a very impor-
tant problem in spintronics to understand and exploit var-
ious physical mechanisms to generate spin current in solid
state devices. Experimentally, the realization of the spin
current has been reported by tuning the confining poten-
tial of the quantum dot and the external magnetic field [2].
The optical-controlled injection of pure spin current has
also been realized experimentally in semiconductors [3–5].
Theoretically, a number of proposals to generate a pure
spin current have been proposed by using the confining po-
tential of quantum dots [6], the pumping frequency [7], the
magnetic barriers [8], the rotating magnetic fields [9,10],
and the Rashba spin-orbit coupling [11].

On the other hand, the series- and parallel-coupled
double quantum dot (DQD) system has attracted much
attention recently, since it makes the quantum transport
phenomena rich and varied. The parallel-coupled DQD
system is of particular interest, in which two coupled QDs
are embedded into opposite arms of the AB ring [12,13].
As a controllable two-level system, the DQD system there-
fore becomes one of the promising candidates as a quan-
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tum bit in quantum computation based on solid-state de-
vices [14]. Inspired by these recent experiments, several
groups have attempted to address this parallel-coupled
DQD system theoretically and predicted the existence of
the Fano resonance [15,16]. Due to the interdot coupling,
the two QD states can form two molecule states. The in-
fluence of the interdot coupling on the pure spin current
is still not clear. It is certainly of practical importance to
control the spin current in the parallel-coupled DQD sys-
tem. Although the AB interference of the charge current
has been well studied in a DQD system, its influence on
the spin current is equally significant, since the rotating
magnetic field provides a spin-flip mechanism during the
resonant tunneling.

In this paper, we investigate the spin pump effects
on the parallel-coupled DQD system connected by two
normal-metal (N) leads. In this N-DQD-N system, two
quantum dots coupled to each other via barrier tunneling
are embedded into opposite arms of an AB ring, respec-
tively. The spin pump is facilitated by a rotating mag-
netic field which induces the spin-flip effects. Then the
spin current is generated, since the spin pump can be
employed as a spin generator [10]. The magnetic field
rotates around ẑ axis with a tilt angle θ as: B(t) =
(B0 sin θ cosωt, B0 sin θ sin ωt, B0 cos θ + B1), where B0

and B1 are the constant magnetic field strengths. The ro-
tating components (B0 sin θ cosωt, B0 sin θ sinωt) in the
x̂-ŷ plane provide a spin flip mechanism. The ẑ compo-
nent Bz = B0 cos θ + B1 gives the Zeeman split and the
magnetic flux through the AB ring.
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With the help of nonequilibrium Green’s function
(NGF) techniques [17–19], we have analyzed the tunable
spin current through this DQD system. Our results show
that two molecular states of the system can be formed
due to the interdot coupling. Since the two states have
different band widths, the spin current shows an asym-
metric structure, which is quite different from the single
N-QD-N system. The number and location of the spin
current peaks can be controlled by making use of various
tunings, such as the strength, the frequency, and the di-
rection of the rotating magnetic field. Furthermore, the
normal 2π period of the spin current with respect to the
magnetic flux can be destroyed by the interdot coupling.
The rest of this paper is organized as follows. In In Sec-
tion 2 we present the model Hamiltonian and derive the
formula of the spin current by using the NGF technique.
In Section 3 we study the spin current by tuning various
parameters. The interdot coupling effects on the spin cur-
rent are discussed in detail. Finally, a brief summary is
given in Section 4.

2 Physical model and formula

The N-DQD-N system with a rotating magnetic field is
described by the following Hamiltonian:

H =
∑

α=L,R

Hα + Hdot + H ′(t) + HT , (1)

with
Hα =

∑

kσ

εα,ka†
α,kσaα,kσ, (2)

Hdot =
∑

σ,i=1,2

(εi − eVgi + σµBBz)d
†
iσdiσ

−
∑

σ

(tceiϕd†1σd2σ + H.c.), (3)

H ′(t) =
∑

i=1,2

γe−iωtd†i↑di↓ + H.c., (4)

HT =
∑

α,kσ,i=1,2

tαid
†
iσaα,kσ + H.c. (5)

Hα (α = L, R) describes the left and right normal metal
leads. Hdot models the parallel-coupled double quantum
dots where d†iσ (diσ) represents the creation (annihila-
tion) operator of the electron with energy εi in the dot
i (i = 1, 2). The DQD energy levels can be changed by the
gate voltage Vgi. µB is the Bohr magneton. tc denotes the
interdot coupling strength, and ϕ denotes a phase shift
related to the flux difference between the left and right
subrings. H ′ is the off diagonal part of the Hamiltonian
due to the rotating magnetic field with the Rabi frequency
γ = µBB0 sin θ. HT represents the tunneling coupling
between the DQD and leads, and the tunneling matrix
elements are set as tL1 = |tL1|eiφ/4, tL2 = |tL2|e−iφ/4,
tR1 = |tR1|e−iφ/4, and tR2 = |tR2|eiφ/4. The phase shift
due to the magnetic flux threading into the AB ring is

assumed to be φ = 2πBzS/φ0 = 2π(φR +φL)/φ0 with the
flux quantum φ0 = hc/e and the area S of the AB ring.
φL/R is the magnetic flux threading the left/right subring.
The difference between the two parts of magnetic fluxes is
ϕ = π(φR−φL)/φ0. In the model above, only the coupling
between the magnetic field and the spin degrees of free-
dom are considered. Since time-dependent magnetic field
rotates in the in the x̂-ŷ plane, its ẑ component is a time
independent constant. Therefore, the magnetic flux due to
the time-dependent rotating components of the magnetic
field is zero [10].

The charge and spin current can be calculated ana-
lytically by using the NGF method. The spin current is
defined as Is = −�

2 (I↑ − I↓) and the charge current is de-
fined as Ie = e(I↑ + I↓) where Iσ is the electron current
with spin σ = ±1 =↑, ↓ [10]. The charge current Ie

α and
spin current Is

α from the α lead to the central region can
be calculated from standard NGF techniques and can be
expressed in terms of the dot’s Green’s function as [17]

Ie,s
α (t) =

2
�
Re

∫
dt′Tr{σe,s[G<(t, t′)Σa

α(t′, t)

+ Gr(t, t′)Σ<
α (t′, t)]}, (6)

where σe and σs are defined as follows

σe = e

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎠ ,

σs = −�

2

⎛

⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎠ . (7)

The retarded Green’s functions are defined as Gr(t, t′) =
−iθ(t − t′)〈{Ψ(t), Ψ †(t′)}〉 and G<(t, t′) = i〈Ψ †(t′)Ψ(t)〉,
respectively, with the operator Ψ = (d†1↑, d

†
1↓, d

†
2↑, d

†
2↓)

†. In
general, to solve a time-dependent problem needs some
perturbation theory. Fortunately, Gr(t, t′) can be solved
exactly for the time-dependent Hamiltonian considered
here [10]. First, it is simple to calculate the retarded
Green’s function for the diagonal part (in spin space) of
the Hamiltonian. Then, the retarded Green’s functions un-
der the rotating magnetic field H ′(t) can be calculated by
using Dyson equation

Gr(t, t′) =G0r(t − t′) +
∫

dt1Gr(t, t1)

× H′(t1)G0r(t1 − t′), (8)

where G0r is the retarded Green’s function without the
rotating magnetic field and H′ is given by

H′(t) =

⎛

⎜⎝

0 γe−iωt 0 0
γeiωt 0 0 0

0 0 0 γe−iωt

0 0 γeiωt 0

⎞

⎟⎠ . (9)
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The lesser Green’s functions can be calculated by using
Keldysh equation

G<(t, t′) =
∫

dt1dt2Gr(t, t1)Σ<(t1 − t2)Ga(t2, t′). (10)

After the double Fourier transform over time t and t′,

G(ε, ε′) =
∫

dtdt′eiεt−iεt′G(t, t′). (11)

The equations for the Green’s function are

Gr
11(ε, ε

′) = 2πG0r
11(ε)δ(ε − ε′) + γGr

12(ε, ε
′ − ω)G0r

11(ε
′)

+ γGr
14(ε, ε

′ − ω)G0r
31(ε

′), (12)

Gr
12(ε, ε

′) = γGr
11(ε, ε

′ + ω)G0r
22(ε

′)

+ γGr
13(ε, ε

′ + ω)G0r
42(ε

′), (13)

Gr
13(ε, ε

′) =2πG0r
13(ε)δ(ε − ε′)

+ γGr
12(ε, ε

′ − ω)G0r
13(ε

′)

+ γGr
14(ε, ε

′ − ω)G0r
33(ε

′), (14)

Gr
14(ε, ε

′) =γGr
11(ε, ε

′ + ω)G0r
24(ε

′)

+ γGr
13(ε, ε

′ + ω)G0r
44(ε

′). (15)

Shifting the variable ε′ to ε′−ω in equations (13) and (15)
and then substituting into equations (12) and (14), we can
solve for Gr

ij(ε, ε
′) with i = 1 and j = 1, 2, 3, 4. The other

matrix elements of Gr can be calculated in a similar way.
It is noted that the rotating magnetic field facilitates the
solution in terms of the matrix Green’s functions. Other-
wise, it would lead to a set of equations that do not close.
The Green’s functions without the rotating magnetic fields
G0r(ε) can be obtained as

G0r(ε) = [gr(ε)−1 − Σr(ε)]−1, (16)

where gr(ε) is the Green’s function of the QD without the
coupling to the leads

[gr(ε)]−1 =
⎛

⎜⎝

ε − ε1↑ + i0+ 0 tce
iϕ 0

0 ε − ε1↓ + i0+ 0 tce
iϕ

tce
−iϕ 0 ε − ε2↑ + i0+ 0
0 tce

−iϕ 0 ε − ε2↓ + i0+

⎞

⎟⎠,

(17)

where the energy level εi is split into εi↓ = εi −µBBz and
εi↑ = εi + µBBz due to Zeeman splitting. The self energy
is Σr(ε) = Σr

L(ε) + Σr
R(ε). Under the wide-bandwidth

approximation, the retarded self-energy can be derived as

Σr
α(ε) = − i

2⎛

⎜⎜⎝

Γ α
1 0

√
Γ α

1 Γ α
2 eiΦα 0

0 Γ α
1 0

√
Γ α

1 Γ α
2 eiΦα√

Γ α
1 Γ α

2 e−iΦα 0 Γ α
2 0

0
√

Γ α
1 Γ α

2 e−iΦα 0 Γ α
2

⎞

⎟⎟⎠ ,

(18)

where Φα = ±φ/2 (α = L/R). The linewidth function is
defined as Γ α

i = 2πραt∗αitαi with ρα being the density of
states of the corresponding α lead, describing the coupling
between the ith QD and the α lead. Once the retarded
Green’s functions are obtained, the lesser Green’s function
can be obtained as

G<(ε, ε′) =
∫

dε1
2π

Gr(ε, ε1)Σ<(ε1)Ga(ε1, ε′), (19)

where Σ<(ε) = Σ<
L (ε)+Σ<

R(ε) with Σ<
L,R = fL,R(Σa

L,R −
Σr

L,R) and fL,R(ε) = 1/(e(ε−µL,R)/kBT + 1) the Fermi dis-
tribution function of the leads. With these Green’s func-
tions, the Fourier transform of the averaged current in one
period is given by

Ie,s
α = −2

�
Re

∫
dε

2π
Tr{σ̂e,s[G<(ε, ε)Σa

α(ε)+Gr(ε, ε)Σ<
α (ε]}.
(20)

In the following, we perform the calculations at zero tem-
perature in units of � = e = 1 and focus on the spin
current at zero bias. The couplings between the quantum
dots and leads are set as Γ α

1 = Γ α
2 = Γα = Γ/2 = 0.1.

The energy and the spin current are scaled by Γ , whose
typical values in experiments are of the order of tens of
µeV [20].

3 Numerical results and discussions

To make the physical picture clear, the two coupled QD
levels can be transformed into two decoupled states of
the DQD molecule. When the magnetic field is zero, the
operator for a molecular state can be expressed as a linear
superposition of the QD operators as

(
d̃+

d̃−

)
=

(
cosβe−iϕ − sinβ

sin β cosβeiϕ

) (
d1

d2

)
, (21)

where d̃− and d̃+ are referred to as the annihilation op-
erators for the bonding and antibonding states of the
QD molecule, and β = 1/2 tan−1[2tc/(ε1 − ε2)]. Thus,
the Hamiltonian for the coupled double quantum dot
HD is diagonalized as H̃D = ε+d̃†+d̃+ + ε−d̃†−d̃−, where
ε± = 1

2 [ε1 + ε2 ± √
(ε1 − ε2)2 + 4t2c ]. The linewidth ma-

trix corresponding to the two states coupled to the left
lead are respectively

Γ L
+ =Γ L

1 cos2 β + Γ L
2 sin2 β

−
√

Γ L
1 Γ L

2 sin(2β) cos
(

φ

2
− ϕ

)
, (22)

and

Γ L
− =Γ L

1 sin2 β + Γ L
2 cos2 β

+
√

Γ L
1 Γ L

2 sin(2β) cos
(

φ

2
− ϕ

)
. (23)

The formula for Γ R
± are the same as above except that the

sign before ϕ is +. Therefore, the DQD system is mapped
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Fig. 1. Is
L versus Vg for (a) tc = 0 and (b) tc = 0.1 at different

γ. Other parameters are θ = π/2, ω = 0.05, B1 = 0, ε1 = 0.1,
and ε2 = −0.1.

onto a system of two independent molecular states with
band Γ α

± connected to leads. The level associated with a
wider band can be referred to as the strongly coupled one,
while that with narrow band is referred to as the weakly
coupled level. At zero bias voltage (µL = µR = 0), a spin
current can be generated by the rotating magnetic field
without a charge current. When a spin-down electron tun-
nels into one of the molecular states ε±↓ from the left lead,
it can absorb a photon and transits to the level ε±↑ with
its spin flipped due to the spin pump effects. This spin-up
electron then tunnels out of the DQD with certain prob-
abilities to the left and right leads. The same happens to
spin-down electrons in the right lead exactly. The aver-
age outcome is that a number of spin-down electrons flow
toward the QD molecule and an equal number of spin-
up electrons flowing away from it. Therefore, a pure spin
current is established without charge current [10]. If the
rotation direction and ẑ component of B(t) are reversed,
the flow of spin current will also reverse.

Figure 1 shows the spin current Is
L versus the gate volt-

age Vg for various γ with and without the interdot cou-
pling tc. When there is no coupling strength with tc = 0
as shown in Figure 1a, the pure spin current under differ-
ent field strength γ exhibits a symmetric structure. Under
the weak external field with γ = 0.1 ≤ Γ/2, two reso-
nance peaks located at the two QD states with ε1 = 0.1
and ε2 = −0.1 are represented. With increasing the field
strength γ, there appear three and four current peaks at
γ = 0.2 and γ = 0.4, respectively. In the above numeri-
cal calculations, the frequency of the external fields is set
as small value so that the adiabatic approximation holds.
Thus the change of the current peaks can be understood
from the expression of the spin current in the adiabatic
regime [10]

Is
L =

ωγ2Γ 2

4π[(ε2 + Γ 2/4 − γ2)2 + Γ 2γ2]
. (24)

When γ = 0.1 ≤ Γ/2, the spin current for each QD state
has only one peak whose location depends on the level εi.
Thus the total spin current for the two QD states shows

Fig. 2. Is
L versus γ for tc = 0 (solid line), and tc = 0.1 (dashed

line). Other parameters are θ = π/2, ω = 0.05, B1 = 0, ε1 = 0,
and ε2 = 0.4.

two current peaks at ε1 and ε2. When γ = 0.2 > Γ/2, the
spin current for each QD state exhibits two peaks. How-
ever, since the higher peak corresponding to ε2 = −0.1
is adjacent to the lower one corresponding to ε1 = 0.1,
the two peaks are very close and overlapped to merge into
one wider central peak, resulting in three peaks in the to-
tal spin current. When γ = 0.4, the locations of the middle
two current peak are large enough to split into two. Thus
the total spin current shows four peaks. When there exists
the coupling strength with tc = 0.1 as shown in Figure 1b,
it is clearly shown that the coupling interaction results in
the shift of resonance peaks. The two molecular states
are formed at ε− = −0.14 and ε+ = 0.14 with a wide
band Γ L

− and narrow band Γ L
+ , respectively. The lower

molecular state becomes wider while the higher molecular
state become narrower, which can be seen from the for-
mula for Γ− and Γ+. The broadening of the lower state
is always accompanied by shrinking the higher state since
Γ L− +Γ L

+ = Γ L
1 +Γ L

2 . The two molecular states has differ-
ent lindwidth and becomes one strongly and one weakly
coupled states due to the interdot coupling. Therefore, the
spin current peaks exhibit an asymmetric structure under
the influence of the interdot coupling.

The magnetic field strength has a distinct influence
on the spin current. To clearly show this, the spin cur-
rent of the left lead versus γ at ε1 = 0.1 and ε2 = 0.5 is
plotted in Figure 2 At zero interdot coupling of tc = 0,
there appears two peaks in the spin current curves with
increasing γ, which is quite different from that for the sin-
gle QD system. The two current peaks locate at γ = 0.1
and γ = 0.5, respectively. The reason is related to the
Rabi resonance caused by the rotating magnetic field with
a Rabi frequency γ. Due to the rotating magnetic field,
the original spin-degenerate QD state εi is splitted into
ε̃iσ = εi ± γ. [21] When γ = 0.1, one of the two states
ε̃1σ is located at the Fermi energy, resulting in one cur-
rent peak. Similarly, when γ = 0.5, one of the two states
ε̃2σ is located at the Fermi energy, which also leads to one
current peak. At the finite interdot coupling of tc = 0.1,
the two peaks shift outwards, since the positions of the
two molecular states ε± are different from the two QD
states ε1,2 due to the nonzero interdot coupling. Under
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Fig. 3. Is
L versus ω for tc = 0 (solid line), and tc = 0.2 (dashed

line). Other parameters are θ = π/2, γ = 0.05, µBB1 = 0.25,
and ε1 = ε2 = 0.

Fig. 4. Is
L versus θ for tc = 0 (solid line), and tc = 0.2 (dashed

line). Other parameters are ω = 0.05, γ = 0.1, B1 = 0, and
ε1 = ε2 = 0.

the rotating magnetic field, the two molecular states also
become spin dependent as ε̃±σ = ε± ± γ. therefore, the
spin current also shows the two peaks.

In order to see the Zeeman splitting effects, the spin
currents versus the the field frequency ω for ε1 = ε2 = 0
with different tc are clearly shown in Figure 3 When there
is no interdot coupling at tc = 0, the spin current shows a
maximum value at about ω = 2µBBz = 0.5 with increas-
ing ω. Due to the Zeeman splitting caused by Bz, the
energy levels of the quantum dots are not spin degenerate
and become εi↑ = µBBz and εi↓ = −µBBz, respectively.
The two spin levels are coupled by the rotating magnetic
field (γ cosωt, γ sinωt). When ω = 2µBBz, the rotating
field induces the resonance between the spin-down and
spin-up levels, resulting a maximum spin current. When
there is a finite interdot coupling at tc = 0.1, the spin
current is decreased and the peak shifts outwards, since
the two molecular states ε± move away from the Fermi
energy.

Figure 4 depicts the spin current as a function of θ for
ε1 = ε2 = 0 with different tc. The spin current has a max-
imum value at θ = π/2, since the segment of external field
causing the spin pump effects reach its maximum value.
With increasing tc, the spin current decreases, because ε+

Fig. 5. Is
L versus φ for tc = 0 (solid line) and tc = 0.1 (dashed

line). Other parameters are θ = π/2, ω = 0.05, γ = 0.1, ε1 = 0,
and ε2 = 0.4.

and ε− are shifted much further from the Fermi energy.
It is also interesting to see the effect of the magnetic flux
on the spin current. We now discuss the AB oscillations of
the spin current as a function of magnetic flux. Figure 5
presents the dependence of the Is

L on the magnetic flux φ
without and with the interdot coupling. In the parallel sys-
tem, there are two subring when there exists the interdot
coupling tc. This leads to complex AB oscillations for the
spin current. For simplicity, we set n = φR/φL = 1. For
the case of tc = 0, the oscillation period of the spin cur-
rent versus magnetic flux is 2π. For the cases of tc = 0.1,
the periods are 4π. The 4π periods agree with the period
formula 2(n + 1)π with n = 1 [22]. It means that the nor-
mal AB oscillations with a period of 2π can be destroyed
and complex periodic oscillations are generated.

4 Summary

In summary, we have theoretically studied the spin pump
effects caused by the rotating magnetic field on the elec-
tron transport through a double quantum dot Aharonov-
Bohm interferometer. The possibility of manipulating the
spin current induced by the spin pump effects is explored
by tuning the strength γ, the frequency ω, and the di-
rection θ of the rotating magnetic field. Owing to the in-
terdot coupling, two molecular states of the system can
be formed. The bonding and antibonding states have a
wide and narrow band respectively, resulting an asym-
metric structure of the spin current. The number and the
location of the spin current peaks depend sensitively on γ
and ω. The amplitude of the spin current depends on the
field direction θ distinctly. Furthermore, the normal 2π
period of the spin current with respect to the magnetic
flux can be destroyed by the interdot coupling.

This work is supported by the National Natural Science Foun-
dation of China (Grant Nos. 10704005 and 10574017), and
by the Beijing Municipal Science and Technology Commission
(Grant No. 2007B017).
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